Serveur d'exploration sur la pourriture ligneuse

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Causal hypotheses accounting for correlations between decomposition rates of different mass fractions of leaf litter.

Identifieur interne : 000170 ( Main/Exploration ); précédent : 000169; suivant : 000171

Causal hypotheses accounting for correlations between decomposition rates of different mass fractions of leaf litter.

Auteurs : Bill Shipley [Canada] ; Antoine Tardif [Canada]

Source :

RBID : pubmed:32954494

Abstract

Whole-leaf decomposition rates are the sum of the decomposition rates of each chemical fraction (water-soluble, cellulose, hemicellulose, lignin), but the decomposition rates of each fraction show complicated patterns of covariation. What explains these patterns of covariation? After measuring the k values of each fraction in 42 different mixtures of tree leaf litters from five species, we tested three alternative causal hypotheses that have been proposed in the literature concerning these mixture interactions using structura equations modeling. All three hypotheses were rejected by the data. We then proposed a new hypothesis, in which rapid decomposition of the labile (water-soluble) fraction stimulates the decomposition of lignin by white-rot fungi and the decomposition of hemicellulose by brown-rot fungi. A more rapid decomposition of hemicellulose then stimulates the decomposition of cellulose. This hypothesis is both consistent with known biology and with our data and is proposed as the most viable current hypothesis.

DOI: 10.1002/ecy.3196
PubMed: 32954494


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Causal hypotheses accounting for correlations between decomposition rates of different mass fractions of leaf litter.</title>
<author>
<name sortKey="Shipley, Bill" sort="Shipley, Bill" uniqKey="Shipley B" first="Bill" last="Shipley">Bill Shipley</name>
<affiliation wicri:level="1">
<nlm:affiliation>Département de biologie, Université de Sherbrooke, Sherbrooke, Quebec, J1K 2R1, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Département de biologie, Université de Sherbrooke, Sherbrooke, Quebec, J1K 2R1</wicri:regionArea>
<wicri:noRegion>J1K 2R1</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Tardif, Antoine" sort="Tardif, Antoine" uniqKey="Tardif A" first="Antoine" last="Tardif">Antoine Tardif</name>
<affiliation wicri:level="1">
<nlm:affiliation>Département de biologie, Université de Sherbrooke, Sherbrooke, Quebec, J1K 2R1, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Département de biologie, Université de Sherbrooke, Sherbrooke, Quebec, J1K 2R1</wicri:regionArea>
<wicri:noRegion>J1K 2R1</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32954494</idno>
<idno type="pmid">32954494</idno>
<idno type="doi">10.1002/ecy.3196</idno>
<idno type="wicri:Area/Main/Corpus">000036</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000036</idno>
<idno type="wicri:Area/Main/Curation">000036</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000036</idno>
<idno type="wicri:Area/Main/Exploration">000036</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Causal hypotheses accounting for correlations between decomposition rates of different mass fractions of leaf litter.</title>
<author>
<name sortKey="Shipley, Bill" sort="Shipley, Bill" uniqKey="Shipley B" first="Bill" last="Shipley">Bill Shipley</name>
<affiliation wicri:level="1">
<nlm:affiliation>Département de biologie, Université de Sherbrooke, Sherbrooke, Quebec, J1K 2R1, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Département de biologie, Université de Sherbrooke, Sherbrooke, Quebec, J1K 2R1</wicri:regionArea>
<wicri:noRegion>J1K 2R1</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Tardif, Antoine" sort="Tardif, Antoine" uniqKey="Tardif A" first="Antoine" last="Tardif">Antoine Tardif</name>
<affiliation wicri:level="1">
<nlm:affiliation>Département de biologie, Université de Sherbrooke, Sherbrooke, Quebec, J1K 2R1, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Département de biologie, Université de Sherbrooke, Sherbrooke, Quebec, J1K 2R1</wicri:regionArea>
<wicri:noRegion>J1K 2R1</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Ecology</title>
<idno type="eISSN">1939-9170</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Whole-leaf decomposition rates are the sum of the decomposition rates of each chemical fraction (water-soluble, cellulose, hemicellulose, lignin), but the decomposition rates of each fraction show complicated patterns of covariation. What explains these patterns of covariation? After measuring the k values of each fraction in 42 different mixtures of tree leaf litters from five species, we tested three alternative causal hypotheses that have been proposed in the literature concerning these mixture interactions using structura equations modeling. All three hypotheses were rejected by the data. We then proposed a new hypothesis, in which rapid decomposition of the labile (water-soluble) fraction stimulates the decomposition of lignin by white-rot fungi and the decomposition of hemicellulose by brown-rot fungi. A more rapid decomposition of hemicellulose then stimulates the decomposition of cellulose. This hypothesis is both consistent with known biology and with our data and is proposed as the most viable current hypothesis.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="Publisher" Owner="NLM">
<PMID Version="1">32954494</PMID>
<DateRevised>
<Year>2020</Year>
<Month>11</Month>
<Day>03</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1939-9170</ISSN>
<JournalIssue CitedMedium="Internet">
<PubDate>
<Year>2020</Year>
<Month>Sep</Month>
<Day>20</Day>
</PubDate>
</JournalIssue>
<Title>Ecology</Title>
<ISOAbbreviation>Ecology</ISOAbbreviation>
</Journal>
<ArticleTitle>Causal hypotheses accounting for correlations between decomposition rates of different mass fractions of leaf litter.</ArticleTitle>
<Pagination>
<MedlinePgn>e03196</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1002/ecy.3196</ELocationID>
<Abstract>
<AbstractText>Whole-leaf decomposition rates are the sum of the decomposition rates of each chemical fraction (water-soluble, cellulose, hemicellulose, lignin), but the decomposition rates of each fraction show complicated patterns of covariation. What explains these patterns of covariation? After measuring the k values of each fraction in 42 different mixtures of tree leaf litters from five species, we tested three alternative causal hypotheses that have been proposed in the literature concerning these mixture interactions using structura equations modeling. All three hypotheses were rejected by the data. We then proposed a new hypothesis, in which rapid decomposition of the labile (water-soluble) fraction stimulates the decomposition of lignin by white-rot fungi and the decomposition of hemicellulose by brown-rot fungi. A more rapid decomposition of hemicellulose then stimulates the decomposition of cellulose. This hypothesis is both consistent with known biology and with our data and is proposed as the most viable current hypothesis.</AbstractText>
<CopyrightInformation>© 2020 by the Ecological Society of America.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Shipley</LastName>
<ForeName>Bill</ForeName>
<Initials>B</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0002-7026-3880</Identifier>
<AffiliationInfo>
<Affiliation>Département de biologie, Université de Sherbrooke, Sherbrooke, Quebec, J1K 2R1, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tardif</LastName>
<ForeName>Antoine</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Département de biologie, Université de Sherbrooke, Sherbrooke, Quebec, J1K 2R1, Canada.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<Agency>Natural Sciences and Engineering Research Council of Canada</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>09</Month>
<Day>20</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Ecology</MedlineTA>
<NlmUniqueID>0043541</NlmUniqueID>
<ISSNLinking>0012-9658</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">cellulose</Keyword>
<Keyword MajorTopicYN="N">hemicellulose</Keyword>
<Keyword MajorTopicYN="N">lignin</Keyword>
<Keyword MajorTopicYN="N">litter decomposition</Keyword>
<Keyword MajorTopicYN="N">path analyses</Keyword>
<Keyword MajorTopicYN="N">proximate tissue analysis</Keyword>
<Keyword MajorTopicYN="N">water soluble</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>03</Month>
<Day>17</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2020</Year>
<Month>06</Month>
<Day>15</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>08</Month>
<Day>06</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>9</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>9</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>9</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>27</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>aheadofprint</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32954494</ArticleId>
<ArticleId IdType="doi">10.1002/ecy.3196</ArticleId>
</ArticleIdList>
<ReferenceList>
<Title>Literature Cited</Title>
<Reference>
<Citation>Aber, J. D., J. M. Melillo, and C. A. Mcclaugherty. 1990. Predicting long-term patterns of mass-loss, nitrogen dynamics, and soil organic-matter formation from initial fine litter chemistry in temperate forest ecosystems. Canadian Journal of Botany 68:2201-2208.</Citation>
</Reference>
<Reference>
<Citation>Aerts, R. 1997. Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: A triangular relationship. Oikos 79:439-449.</Citation>
</Reference>
<Reference>
<Citation>Austin, A. T., and C. L. Ballare. 2010. Dual role of lignin in plant litter decomposition in terrestrial ecosystems. Proceedings of the National Academy of Sciences USA 107:4618-4622.</Citation>
</Reference>
<Reference>
<Citation>Berg, B. 2014. Decomposition patterns for foliar litter-A theory for influencing factors. Soil Biology and Biochemistry 78:222-232.</Citation>
</Reference>
<Reference>
<Citation>Berg, B., and C. A. McClaugherty. 2014. Plant litter: Decomposition, humus formation, carbon sequestration. Springer-Verlag, Berlin, Germany.</Citation>
</Reference>
<Reference>
<Citation>Chapin, F. S., P. A. Matson, and H. A. Mooney. 2002. Principles of terrestrial ecosystem ecology. Springer, New York, USA.</Citation>
</Reference>
<Reference>
<Citation>Deacon, J. 2006. Fungal biology. Fourth edition. Blackwell Publishing, Oxford, UK.</Citation>
</Reference>
<Reference>
<Citation>Hindrichsen, I. K., M. Kreuzer, J. Madsen, and K. E. Bach Knudsen. 2006. Fiber and lignin analysis in concentrate, forage, and feces: Detergent versus enzymatic-chemical method. Journal of Dairy Science 89:2168-2176.</Citation>
</Reference>
<Reference>
<Citation>Klotzbücher, T., K. Kaiser, G. Guggenberger, C. Gatzek, and K. Kalbitz. 2011. A new conceptual model for the fate of lignin in decomposing plant litter. Ecology 92:1052-1062.</Citation>
</Reference>
<Reference>
<Citation>Lefcheck, J. S. 2016. piecewiseSEM: Piecewise structural equation modelling in r for ecology, evolution, and systematics. Methods in Ecology and Evolution 7:573-579.</Citation>
</Reference>
<Reference>
<Citation>Melillo, J. M., J. D. Aber, and J. F. Muratore. 1982. Nitrogen and lignin control of hardwood leaf litter decomposition dynamics. Ecology 63:621-626.</Citation>
</Reference>
<Reference>
<Citation>Moore, J. A. M., B. N. Sulman, M. A. Mayes, C. M. Patterson, and A. T. Classen. 2019. Plant roots stimulate the decomposition of complex, but not simple, soil carbon. Functional Ecology 34:899-910.</Citation>
</Reference>
<Reference>
<Citation>Olson, J. S. 1963. Energy storage and the balance of producers and decomposers in biological systems. Ecology 44:322-331.</Citation>
</Reference>
<Reference>
<Citation>Pearl, J. 2009. Causality: models, reasoning, and inference. Second edition. Cambridge University Press, Cambridge, UK.</Citation>
</Reference>
<Reference>
<Citation>Preston, C. M., J. R. Nault, and J. A. Trofymow. 2009a. Chemical changes during 6 years of decomposition of 11 litters in some Canadian forest sites. Part 2. 13C abundance, solid-state 13C NMR spectroscopy and the meaning of "lignin." Ecosystems 12:1078-1102.</Citation>
</Reference>
<Reference>
<Citation>Preston, C. M., J. R. Nault, J. A. Trofymow, and C. Smyth. 2009b. Chemical changes during 6 years of decomposition of 11 litters in some Canadian forest sites. Part 1. Elemental composition, tannins, phenolics, and proximate fractions. Ecosystems 12:1053-1077.</Citation>
</Reference>
<Reference>
<Citation>R_Development Core_Team. 2016. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. www.r-project.org</Citation>
</Reference>
<Reference>
<Citation>Rosseel, Y. 2012. lavaan: An R package for structural equation modeling. Journal of Statistical Software 48:1-36.</Citation>
</Reference>
<Reference>
<Citation>Rovira, P., and R. Rovira. 2010. Fitting litter decomposition datasets to mathematical curves: Towards a generalised exponential approach. Geoderma 155:329-343.</Citation>
</Reference>
<Reference>
<Citation>Shipley, B. 2000a. Cause and correlation in biology: A user's guide to path analysis, structural equations, and causal inference. Cambridge University Press, Cambridge, UK.</Citation>
</Reference>
<Reference>
<Citation>Shipley, B. 2000b. A new inferential test for path models based on directed acyclic graphs. Structural Equation Modeling 7:206-218.</Citation>
</Reference>
<Reference>
<Citation>Shipley, B. 2009. Confimatory path analysis in a generalized multilevel context. Ecology 90:363-368.</Citation>
</Reference>
<Reference>
<Citation>Shipley, B. 2016. Cause and correlation in biology: A user's guide to path analysis, structural equations and causal inference with R. Second edition. Cambridge University Press, Cambridge, UK.</Citation>
</Reference>
<Reference>
<Citation>Shipley, B., M. J. Lechowicz, I. Wright, and P. B. Reich. 2006. Fundamental trade-offs generating the worldwide leaf economics spectrum. Ecology 87:535-541.</Citation>
</Reference>
<Reference>
<Citation>Strickland, M. S., E. Osburn, C. Lauber, N. Fierer, and M. A. Bradford. 2009. Litter quality is in the eye of the beholder: Initial decomposition rates as a function of inoculum characteristics. Functional Ecology 23:627-636.</Citation>
</Reference>
<Reference>
<Citation>Talbot, J. M., and K. K. Treseder. 2012. Interactions among lignin, cellulose, and nitrogen drive litter chemistry-decay relationships. Ecology 93:345-354.</Citation>
</Reference>
<Reference>
<Citation>Tardif, A., and B. Shipley. 2013. Using the biomass-ratio and idiosyncratic hypotheses to predict mixed-species litter decomposition. Annals of Botany 111:135-141.</Citation>
</Reference>
<Reference>
<Citation>Taylor, B. R., D. Parkinson, and W. F. J. Parsons. 1989. Nitrogen and lignin content as predictors of litter decay-rates-a microcosm test. Ecology 70:97-104.</Citation>
</Reference>
<Reference>
<Citation>Trofymow, J. A. et al 2002. Rates of litter decomposition over 6 years in Canadian forests: influence of litter quality and climate. Canadian Journal of Forest Research-Revue Canadienne De Recherche Forestiere 32:789-804.</Citation>
</Reference>
<Reference>
<Citation>Van Soest, P. J. 1963. Use of detergents in the analysis of fibrous feeds. II. A rapid method for the determination of fiber and lignin. Journal of the Association of Official Analytical Chemists 46:829-835.</Citation>
</Reference>
<Reference>
<Citation>Wright, I. J. et al. 2004. The worldwide leaf economics spectrum. Nature 428:821-827.</Citation>
</Reference>
<Reference>
<Citation>Zhang, M., X. Cheng, Q. Geng, Z. Shi, Y. Luo, and X. Xu. 2019. Leaf litter traits predominantly control litter decomposition in streams worldwide. Global Ecology and Biogeography 28:1469-1486.</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Canada</li>
</country>
</list>
<tree>
<country name="Canada">
<noRegion>
<name sortKey="Shipley, Bill" sort="Shipley, Bill" uniqKey="Shipley B" first="Bill" last="Shipley">Bill Shipley</name>
</noRegion>
<name sortKey="Tardif, Antoine" sort="Tardif, Antoine" uniqKey="Tardif A" first="Antoine" last="Tardif">Antoine Tardif</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/WhiteRotV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000170 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000170 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    WhiteRotV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32954494
   |texte=   Causal hypotheses accounting for correlations between decomposition rates of different mass fractions of leaf litter.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32954494" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a WhiteRotV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Tue Nov 17 14:47:15 2020. Site generation: Tue Nov 17 14:50:18 2020